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1 Introduction

SP1 Version 4 utilizes a new memory consistency argument based on ellpitic curve based multiset
hash functions. We describe here the multiset hash function and the choice of elliptic curve.

The goal of a memory consistency argument in a zkVM, is to ensure that when data is read
from a given memory address, the value seen there is the value that was last written to the same
address. In SP1 we follow the off-line memory checking approach of Blum et al. [BEG+94], as
proposed in [Set20].

The core of this argument is a multiset equality checking procedure. As the reduction from
memory consistency to multiset equality is covered in detail in the standard textbook by Thaler
[Tha22, Section 6], here we focus on the multiset equality test.

Organization. In Section 2 we describe Multiset Hashing and review the construction. In Sec-
tion 3 we discuss our choice of elliptic curve.

2 Multiset Hashing

Multiset hashing, introduced by Clarke, Devadas, van Dijk, Gassend and Suh [CDvD+03] (building
on Bellare and Micciancio [BM97]) allows one to hash a large (multi-)set into a short string so
that it is computationally difficult to find two sets that hash to the same value. The hashing is
performed in an incremental manner – one element at a time. A key property is that the hash
value obtained is independent of the order in which elements were hashed. Thus, we can compare
two sets that were generated in a different element order.

Multiset hash functions enable a very efficient multiset equality test. As compared to other
approaches, a multiset hash allows for memory checking even in an IVC (interactive verifiable com-
putation) scenario – namely, as the execution is run, one can simultaneously update the hash value
without waiting for the computation to be finalized.1

1In contrast, other approaches use verifier randomness to check the memory. This randomness would typically be
generated via an application of Fiat-Shamir, which necessitates waiting for the entire computation to be run before
starting the memory consistency check. Another approach based on folding was recently proposed by [AS24].
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2.1 Definition

A multiset hash2 [CDvD+03] , for a universe U , is a family of efficiently computable compressing
functions H = {hk : P(U) → {0, 1}λ}k∈{0,1}∗ , where λ denotes the security parameter, equipped
with the following efficient algorithms:

1. Empty Set: given k, returns hk(∅).

2. Increment: given k, h(S), where S ⊆ U , and u ∈ U , returns h(S ∪ {u}).

We require that finding multiset collisions be intractable. Formally, for every polynomial-time
adversary A it holds that:

Pr
k

S,T←A(k)

[
S ̸= T ∧ hk(S) = hk(T )

]
is negligible (in the length of k).

Remark 1 (On Unkeyed Functions). Similarly to definitions of collision resistant hash functions,
the goal of the key in the above definition is to protect again non-uniform attacks in which the
adversary has hard-coded collisions. Similarly to practical hash function constructions, below we
sometimes consider keyless hash functions, which allow for security against uniform adversaries.

2.2 Hash-to-Group Based Construction

Let (G,+) be a cyclic group, written in additive notation. Let {fk : U → G}k be a collection of
functions. Consider the multiset hash function defined as:

hk(S) =
∑
s∈S

fk(s).

Notice that the emptyset and increment functionalities can be easily implemented – the hash
of the empty set is the group’s identity element 0G, and to add an element x to a multiset S, just
compute h(S) + h(x).

In [CDvD+03, Section 5] (building on [BM97]) it was shown that the construction above is
multiset collision resistant, assuming that discrete log is hard in G, and fk : U → G is modeled as
a random function.

2.3 An Elliptic Curve Based Construction

Following [MTA16] we consider an implementation of the hash-to-group based approach of Sec-
tion 2.2, when the group G is the set of points (x, y) on an elliptic curve y2 = x3+Ax+B (together
with the special point at infinity) relative to a large finite field F and where A,B ∈ F. The hash
function that we use is Poseidon2 [GKS23] over a BabyBear field. To hash an element into a elliptic
curve point, we use Poseidon2 to get the x coordinate of the point. As this may not be a valid
x coordinate of the elliptic curve, we add a 8-bit tweak, which will also be hashed in. This is
explained to be secure in [Gro24]. Also, as explained in [Gro24], we constrain that the sign of the
y coordinate can not be flipped, by using appropriate range checks.

2Our definition is somewhat simplified as compared to that in [CDvD+03]. In particular, while we do allow for a
keyed function, we do not allow the hash function itself to be randomized, and so the equality tester considered in
[CDvD+03] becomes redundant.
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3 Elliptic Curve Parameterization

SP1’s arithmetization uses the BabyBear field: Fp with p = 15 ·227+1. Given that, it is convenient
to use an elliptic curve over the degree d = 7 extension of the aforementioned BabyBear field.

Selected Parameters. We choose the representation Fp7 = Fp[z]/(z
7 − 2z − 5) (it can be con-

firmed that the above polynomial is irreducible over the base field), and the elliptic curve is

y2 = x3 + 2x+ 26z5.

This curve has prime order

r = 134062710381075636479997415343722979822569397998875702343109881667.

Note that if A,B ∈ Fp, then the elliptic curve will have the curve over Fp as a subgroup, so the
group order will not be a prime. We have selected A,B with simplest form for efficient computation.

Basic Tests. To ensure the security of the scheme, we run the basic checks described by Pornin
[Por22]. We also run the basic checks described in [BL24].

We verify the requirements put forth in [Por22, Section 2] using exact numbers and further
check the parameters described by Joux and Vitse [JV13, Theorem 1].

Targeted Security Level. Throughout, we target 100 bits of security. We remark that a higher
security level such as 128 is out of reach since:

• The underlying STARK proof that we use a priori only has roughly 102 bits of security.

• We are using a curve of order 217 bits, so our security is at most 108.5 bits

3.1 Analysis

First of all, the extension degree k = 7 is clearly prime, as required. Roughly speaking, Pornin
[Por22] describes the original attack due to Gaudry [Gau04] that has running time:

22k(k−1) · p2−2/k,

where p is the size of the base field and k is the degree of extension. For example, for p ≈ 264 and
k = 5, the computational complexity is around

22·5·4 · 264·(2−2/5) ≈ 2142

which matches the numbers presented in [Por22].
For our parameterization, with p ≈ 231 and k = 7, this turns out to be

22·7·6 · 231·(2−2/7) ≈ 2137,

which is significantly higher than our desired security threshold.
Since Pornin’s paper considers 64 bit fields, it has the luxury of skipping the details of Joux

and Vitse’s [JV13] variant of the attack, as it already has at least an overhead of O(p2), which is
too costly when p ≈ 264.
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In contrast, in our setting, we cannot skip this analysis. Their result [JV13, Theorem 1] yields
an attack with complexity

(k − 1)!
(
2(k−1)(k−2)ekk−1/2

)ω
p2,

where ω denotes the matrix multiplication exponent. Conservatively taking ω = 2, this gives us
roughly the following cost of their attack, which against suffices for our purposes

720 ·
(
26·5 · e7 · 7−1/2

)2
231·2 ≈ 2148.

Thus, direct attacks on the 217-bit elliptic curve work best in this regime of parameters.

3.2 Embedding Degree

If the elliptic curve has size r, it is important that the embedding degree e, the minimum positive
integer such that pe ≡ 1 (mod r) is large, to avoid MOV-type attacks. We can check that this e
is large by using standard order-checking algorithms in SageMath. For additional safety, we also
check that this is true for our quadratic twist, which is described below.

3.3 Twist Security

While not crucial in our current setting (especially since we will use all x, y coordinates as our
system is extremely sensitive to positive/negative y selections) in some situations regarding elliptic
curve (to be exact, using a Montgomery-ladder) it is important that the quadratic twist of the
elliptic curve also has good order for cryptographic purposes and so we check that our curve’s
quadratic twist also has prime size. The size of our curve’s quadratic twist is

r′ = 2p7 + 2− r = 134062710381075636479997415343722385953411890336803350577206350017

3.4 CM Discriminant

We have checked that the CM Discriminant of the curve is sufficiently large, at least 200 bits.
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